イマシロ チカヒロ
  今城 哉裕
   所属   研究施設 研究施設
   職種   非常勤講師
論文種別 原著
言語種別 英語
査読の有無 査読あり
表題 Development of accurate temperature regulation culture system with metallic culture vessel demonstrates different thermal cytotoxicity in cancer and normal cells.
掲載誌名 正式名:Scientific reports
略  称:Sci Rep
ISSNコード:20452322/20452322
掲載区分国外
巻・号・頁 11(1),pp.21466
著者・共著者 IMASHIRO Chikahiro†*, TAKESHITA Haruka, MORIKURA Takashi, MIYATA Shogo, TAKEMURA Kenjiro, KOMOTORI Jun*
担当区分 筆頭著者,責任著者
発行年月 2021/11/02
概要 Hyperthermia has been studied as a noninvasive cancer treatment. Cancer cells show stronger thermal cytotoxicity than normal cells, which is exploited in hyperthermia. However, the absence of methods evaluating the thermal cytotoxicity in cells prevents the development of hyperthermia. To investigate the thermal cytotoxicity, culture temperature should be regulated. We, thus, developed a culture system regulating culture temperature immediately and accurately by employing metallic culture vessels. Michigan Cancer Foundation-7 cells and normal human dermal fibroblasts were used for models of cancer and normal cells. The findings showed cancer cells showed stronger thermal cytotoxicity than normal cells, which is quantitatively different from previous reports. This difference might be due to regulated culture temperature. The thermal stimulus condition (43 °C/30 min) was, further, focused for assays. The mRNA expression involving apoptosis changed dramatically in cancer cells, indicating the strong apoptotic trend. In contrast, the mRNA expression of heat shock protein (HSP) of normal cells upon the thermal stimulus was stronger than cancer cells. Furthermore, exclusively in normal cells, HSP localization to nucleus was confirmed. These movement of HSP confer thermotolerance to cells, which is consistent with the different thermal cytotoxicity between cancer and normal cells. In summary, our developed system can be used to develop hyperthermia treatment.
DOI 10.1038/s41598-021-00908-0
PMID 34728686