MORIMOTO Satoshi
   Department   School of Medicine(Tokyo Women's Medical University Hospital), School of Medicine
   Position   Associate Professor
Article types Original article
Language English
Peer review Peer reviewed
Title Pressor response to pulsatile compression of the rostral ventrolateral medulla mediated by nitric oxide and c-fos expression.
Journal Formal name:British journal of pharmacology
Abbreviation:Br J Pharmacol
ISSN code:00071188/00071188
Domestic / ForeginForegin
Volume, Issue, Page 129(5),pp.859-64
Author and coauthor Morimoto S†*, Sasaki S, Miki S, Kawa T, Itoh H, Nakata T, Takeda K, Nakagawa M
Authorship Lead author,Corresponding author
Publication date 2000/03
Summary It has been reported that neurovascular compression of the rostral ventrolateral medulla might be causally related to essential hypertension. Recently, we found that pulsatile compression of the rostral ventrolateral medulla increases sympathetic nerve activity and elevates arterial pressure via activation of glutamate receptors in rats. We also found that increases in sympathetic and cardiovascular activities by microinjection of L-glutamate into the rostral ventrolateral medulla are mediated by c-fos expression-related substance(s) following activation of the nitric oxide-cyclic GMP pathway. Herein, we investigated whether responses to pulsatile compression are mediated by local activation of the nitric oxide-cyclic GMP pathway and/or c-fos expression-related substance(s) in rats. Increases in arterial pressure (15+/-1 mmHg), heart rate (9+/-1 b.p.m.), and sympathetic nerve activity (% change: 8.5+/-1.1%) induced by pulsatile compression were partially but significantly inhibited after local microinjection of a nitric oxide synthase inhibitor, L-N(G)-nitroarginine methyl ester (8+/-2 mmHg, 1+/-1 b.p.m., 4.0+/-1.3%; P<0.05 vs compression without pretreatment) or 7-nitroindazole (7+/-2 mmHg, 2+/-1 b.p.m., 4.0+/-1. 5%; P<0.05), or a soluble guanylate cyclase inhibitor, methylene blue (9+/-1 mmHg, 4+/-1 b.p.m., 4.1+/-1.4%; P<0.05). In addition, increases in arterial pressure, heart rate, and sympathetic nerve activity by pulsatile compression were significantly reduced 6 h after microinjection of antisense oligodeoxynucleotide to c-fos mRNA (2+/-2 mmHg, 2+/-1 b.p.m., 1.0+/-1.0%; P<0.05 vs sense oligodeoxynucleotide). These results suggest that increases in sympathetic and cardiovascular activities induced by pulsatile compression of the rostral ventrolateral medulla are mediated, at least in part, by local activation of the nitric oxide-cyclic GMP pathway and c-fos expression-related substance(s) in rats.
DOI 10.1038/sj.bjp.0703121
PMID 10696082