シミズ タツヤ   SHIMIZU Tatsuya
  清水 達也
   所属   研究施設 研究施設
   職種   教授
論文種別 原著
言語種別 英語
査読の有無 査読あり
表題 Novel cardiac precursor-like cells from human menstrual blood-derived mesenchymal cells.
掲載誌名 正式名:Stem cells (Dayton, Ohio)
略  称:Stem Cells
ISSNコード:(1549-4918)1066-5099(Linking)
掲載区分国外
出版社 wiley
巻・号・頁 26(7),pp.1695-704
著者・共著者 HIDA Naoko†, NISHIYAMA Nobuhiro, MIYOSHI Shunichieo, KIRA Shinichiro, SEGAWA Kaoru, UYAMA Taro, MORI Taisuke, MIYADO Kenji, IKEGAI Yukinori, CUI ChangHao, KIYONO Tohru, KYO Satoru, SHIMIZU Tatsuya, OKANO Teruo, SAKAMOTO Michie, OGAWA Satoshi, UMEZAWA Akhihiro*
発行年月 2008/07
概要 Stem cell therapy can help repair damaged heart tissue. Yet many of the suitable cells currently identified for human use are difficult to obtain and involve invasive procedures. In our search for novel stem cells with a higher cardiomyogenic potential than those available from bone marrow, we discovered that potent cardiac precursor-like cells can be harvested from human menstrual blood. This represents a new, noninvasive, and potent source of cardiac stem cell therapeutic material. We demonstrate that menstrual blood-derived mesenchymal cells (MMCs) began beating spontaneously after induction, exhibiting cardiomyocyte-specific action potentials. Cardiac troponin-I-positive cardiomyocytes accounted for 27%-32% of the MMCs in vitro. The MMCs proliferated, on average, 28 generations without affecting cardiomyogenic transdifferentiation ability, and expressed mRNA of GATA-4 before cardiomyogenic induction. Hypothesizing that the majority of cardiomyogenic cells in MMCs originated from detached uterine endometrial glands, we established monoclonal endometrial gland-derived mesenchymal cells (EMCs), 76%-97% of which transdifferentiated into cardiac cells in vitro. Both EMCs and MMCs were positive for CD29, CD105 and negative for CD34, CD45. EMCs engrafted onto a recipient's heart using a novel 3-dimensional EMC cell sheet manipulation transdifferentiated into cardiac tissue layer in vivo. Transplanted MMCs also significantly restored impaired cardiac function, decreasing the myocardial infarction (MI) area in the nude rat model, with tissue of MMC-derived cardiomyocytes observed in the MI area in vivo. Thus, MMCs appear to be a potential novel, easily accessible source of material for cardiac stem cell-based therapy.
DOI 10.1634/stemcells.2007-0826
PMID 18420831