オカノ テルオ   OKANO Teruo
  岡野 光夫
   所属   研究施設 研究施設
   職種   特任顧問
論文種別 原著
言語種別 英語
査読の有無 査読あり
表題 Mesenchymal Stem Cell Sheet Centrifuge-Assisted Layering Augments Pro-Regenerative Cytokine Production.
掲載誌名 正式名:Cells
略  称:Cells
ISSNコード:20734409/20734409
掲載区分国外
巻・号・頁 11(18),pp.2840
著者・共著者 Sophia Bou-Ghannam †, KIM Kyungsook*, KONDO Makoto, David W. Grainger, OKANO Teruo*
担当区分 最終著者
発行年月 2022/09
概要 A focal advantage of cell sheet technology has been as a scaffold-free three-dimensional (3D) cell delivery platform capable of sustained cell engraftment, survival, and reparative function. Recent evidence demonstrates that the intrinsic cell sheet 3D tissue-like microenvironment stimulates mesenchymal stem cell (MSC) paracrine factor production. In this capacity, cell sheets not only function as 3D cell delivery platforms, but also prime MSC therapeutic paracrine capacity. This study introduces a "cell sheet multilayering by centrifugation" strategy to non-invasively augment MSC paracrine factor production. Cell sheets fabricated by temperature-mediated harvest were first centrifuged as single layers using optimized conditions of rotational speed and time. Centrifugation enhanced cell physical and biochemical interactions related to intercellular communication and matrix interactions within the single cell sheet, upregulating MSC gene expression of connexin 43, integrin β1, and laminin α5. Single cell sheet centrifugation triggered MSC functional enhancement, secreting higher concentrations of pro-regenerative cytokines vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), and interleukin-10 (IL-10). Subsequent cell sheet stacking, and centrifugation generated cohesive, bilayer MSC sheets within 2 h, which could not be accomplished within 24 h by conventional layering methods. Conventional layering led to H1F-1α upregulation and increased cell death, indicating a hypoxic thickness limitation to this approach. Comparing centrifuged single and bilayer cell sheets revealed that layering increased VEGF production 10-fold, attributed to intercellular interactions at the layered sheet interface. The "MSC sheet multilayering by centrifugation" strategy described herein generates a 3D MSC-delivery platform with boosted therapeutic factor production capacity.
DOI 10.3390/cells11182840
PMID 36139414