タナベ ケンジ
  田邊 賢司
   所属   研究施設 研究施設
   職種   准教授
論文種別 原著
言語種別 英語
査読の有無 査読あり
表題 The distribution of phosphatidylinositol 4,5-bisphosphate in the budding yeast plasma membrane.
掲載誌名 正式名:Histochemistry and cell biology
略  称:Histochem Cell Biol
ISSNコード:1432119X/09486143
掲載区分国外
巻・号・頁 156(2),pp.109-121
著者・共著者 Kurokawa Yuna, Konishi Rikako, Tomioku Kanna, Tanabe Kenji, Fujita Akikazu
発行年月 2021/08
概要 Phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) is generated through phosphorylation of phosphatidylinositol 4-phosphate (PtdIns(4)P) by Mss4p, the only PtdIns phosphate 5-kinase in yeast cells. PtdIns(4,5)P2 is involved in various kinds of yeast functions. PtdIns(4)P is not only the immediate precursor of PtdIns(4,5)P2, but also an essential signaling molecule in the plasma membrane, Golgi, and endosomal system. To analyze the distribution of PtdIns(4,5)P2 and PtdIns(4)P in the yeast plasma membrane at a nanoscale level, we employed a freeze-fracture electron microscopy (EM) method that physically immobilizes lipid molecules in situ. It has been reported that the plasma membrane of budding yeast can be divided into three distinct areas: furrowed, hexagonal, and undifferentiated flat. Previously, using the freeze-fracture EM method, we determined that PtdIns(4)P is localized in the undifferentiated flat area, avoiding the furrowed and hexagonal areas of the plasma membrane. In the present study, we found that PtdIns(4,5)P2 was localized in the cytoplasmic leaflet of the plasma membrane, and concentrated in the furrowed area. There are three types of PtdIns 4-kinases which are encoded by stt4, pik1, and lsb6. The labeling density of PtdIns(4)P in the plasma membrane significantly decreased in both pik1ts and stt4ts mutants. However, the labeling densities of PtdIns(4,5)P2 in the plasma membrane of both the pik1ts and stt4ts mutants were comparable to that of the wild type yeast. These results suggest that PtdIns(4)P produced by either Pik1p or Stt4p is immediately phosphorylated by Mss4p and converted to PtdIns(4,5)P2 at the plasma membrane.
DOI 10.1007/s00418-021-01989-8
PMID 34052862