エグチ セイイチロウ   Eguchi Seiichirou
  江口 盛一郎
   所属   医学部 医学科(東京女子医科大学病院)
   職種   助教
論文種別 原著
言語種別 英語
査読の有無 査読あり
表題 PiTMaP: A New Analytical Platform for High-Throughput Direct Metabolome Analysis by Probe Electrospray Ionization/Tandem Mass Spectrometry Using an R Software-Based Data Pipeline.
掲載誌名 正式名:Analytical chemistry
略  称:Anal Chem
ISSNコード:15206882/00032700
掲載区分国外
巻・号・頁 92(12),pp.8514-8522
著者・共著者 Zaitsu Kei†*, Eguchi Seiichiro, Ohara Tomomi, Kondo Kenta, Ishii Akira, Tsuchihashi Hitoshi, Kawamata Takakazu, Iguchi Akira
発行年月 2020/06
概要 A new analytical platform called PiTMaP was developed for high-throughput direct metabolome analysis by probe electrospray ionization/tandem mass spectrometry (PESI/MS/MS) using an R software-based data pipeline. PESI/MS/MS was used as the data acquisition technique, applying a scheduled-selected reaction monitoring method to expand the targeted metabolites. Seventy-two metabolites mainly related to the central energy metabolism were selected; data acquisition time was optimized using mouse liver and brain samples, indicating that the 2.4 min data acquisition method had a higher repeatability than the 1.2 and 4.8 min methods. A data pipeline was constructed using the R software, and it was proven that it can (i) automatically generate box-and-whisker plots for all metabolites, (ii) perform multivariate analyses such as principal component analysis (PCA) and projection to latent structures-discriminant analysis (PLS-DA), (iii) generate score and loading plots of PCA and PLS-DA, (iv) calculate variable importance of projection (VIP) values, (v) determine a statistical family by VIP value criterion, (vi) perform tests of significance with the false discovery rate (FDR) correction method, and (vii) draw box-and-whisker plots only for significantly changed metabolites. These tasks could be completed within ca. 1 min. Finally, PiTMaP was applied to two cases: (1) an acetaminophen-induced acute liver injury model and control mice and (2) human meningioma samples with different grades (G1-G3), demonstrating the feasibility of PiTMaP. PiTMaP was found to perform data acquisition without tedious sample preparation and a posthoc data analysis within ca. 1 min. Thus, it would be a universal platform to perform rapid metabolic profiling of biological samples.
DOI 10.1021/acs.analchem.0c01271
PMID 32375466